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A B S T R A C T

The purpose of this study aimed to evaluate the noise reduction efficiency of a 3D median modified Wiener
filter (MMWF) in brain T1-weighted magnetic resonance (MR) images. A simulation using BrainWeb phantom
data and real experimental research based on data of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
were performed, and the 2D MMWF was modeled to prove the usefulness of the proposed 3D MMWF. Brain MR
images were obtained according to the kernel size and noise level of 2D and 3D MMWF, and the coefficient of
variation (COV) and edge preservation index (EPI) were used for the quantitative evaluation of the obtained
images. According to the changes in COV with respect to the changes in filter size, simulated T1-weighted
images with 3D MMWF had a 2.76 times higher denoising performance than 2D MMWF. Furthermore, the
EPI of simulated T1 weighted images with 3D MMWF had a 1.17 times better performance than that of
simulated T1-weighted images with 2D MMWF, particularly in noisy images. To confirm the performance
of 3D MMWF with clinical T1-weighted images, we obtained a T1-weighted image from ADNI and applied 2D
and 3D MMWF with respect to kernel size. According to COV changes with respect to kernel size in both filters,
clinical T1-weighted images showed a 1.14 times improvement with 3D MMWF and had a similar tendency as
simulated images. We compared 2D and 3D MMWF in terms of tissue preservation and denoising performance
in T1-weighted images. Our results indicate that the proposed 3D MMWF has better denoising performance
than 2D MMWF for Rician noise and preserved the edges of brain tissues.
. Introduction

In the medical fields, magnetic resonance imaging (MRI) has high
patial resolution and can provide contrast enhancement for the diag-
osis of lesions in soft tissue, particularly the brain. Appropriate image
cquisition parameter should be used not only investigation of the exact
ocation of the lesion but also determination of the characteristic of
egion of interest (ROI). T1-weighted image is one of the representative
equences in MRI acquisition that use short time repetition and time
f echo. T1-weighted images provide the accurate brain segmentation
or functional MRI (fMRI) or diffusion MRI (dMRI) and the course of
he disease (e.g., Parkinson’s disease, Alzheimer’s disease, and cerebral
nfraction) [1–4].

Rician noise is generated during MRI acquisition, and it disturbs the
ocation of brain lesions and reduces the accuracy of disease diagnosis.
hermal noise generated by the human body and magnetic resonance
MR) equipment affects the real and imaginary parts of k-space data as
hite noise with Gaussian distribution. MRI reconstructs the k-space
ata affected by thermal noise by using inverse Fourier transform.

∗ Corresponding author.
E-mail address: yj20@gachon.ac.kr (Y. Lee).

These effects are expressed as Rayleigh and Gaussian distributions in
MRI, and the combined form is called Rician noise [5–7]. Research
of filtering-based, transform domain, and statistical approach image
filters have been conducted to remove Rician noise in MRI [8,9]. Repre-
sentatively, linear filters (Gaussian, mean filter) and non-linear filters
(non-local mean, weighted median filter, and adaptive Wiener filter)
are widely used to remove the Rician noise in MRI. Median filter applies
the median value of the ROI preserves the high frequency signal of the
medical image but increasing the blurring effect [10]. In addition, a
Wiener filter minimizes the squared error between the reference image
and the reconstructed image [11]. According to Ali et al. [12], image
noise was effectively reduced when the above-mentioned filters were
applied to MRI performed using various imaging techniques. Although
image filters effectively reduce the noise of images, such filters increase
the blurring effect of MRI, and cause loss of information and sharpness
between tissues [13].

To solve this problem, Cannistraci et al. [14] proposed the 2D
median modified Wiener filter (MMWF), which is a combination of
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Table 1
Acquisition of T1-weighted image parameters from the BrainWeb and ADNI database.

T1-weighted
image

Noise level TR TE Flip angle Slice
thickness

Pulse
sequence

BrainWeb
database

0%

6.8 ms 3.2 ms 9 degrees 1.2 mm

Simulated fast
low-angle shot

1%
3%
5%
7%
9%

ADNI
database

– Gradient echo
Fig. 1. Sample T1-weighted images obtained from (a) BrainWeb and the (b) ADNI clinical database. Region of interest (ROI) using box type were illustrated for calculating the
coefficient of variation (COV).
median and Wiener filters. 2D MMWF not only maintains the edges
of structural images but also reduces the image noise. Until recently,
research has been conducted on noise removal by applying 2D MMWF
to diagnostic medical images [15–19]. According to Lee et al. [16],
application of 2D MMWF to an X-ray image improved the contrast-
to-noise ratio (CNR) by 1.08 times, the coefficient of variation (COV)
by 1.10 times, and blind/referenceless image spatial quality evaluator
by 1.03 times compared with those of the obtained image. Further-
more, Kim et al. [15], applied 2D MMWF to a single photon emission
computed tomography (SPECT) image and obtained enhancements of
35.9% and 17.1% in signal-to-noise ratio (SNR) and CNR, respectively.
Choi et al. [19] verified that 2D MMWF has better performance in
maintaining the similarity and noise evaluation index than median and
Wiener filters in T2-weighted images. Therefore, the proper use of 2D
MMWF in medical images, including MRI scans, could reduce the noise
in images and preserve the edges of tissues.

However, MRI represents complicated 3D anatomical structures;
therefore, the preservation of the spatial information of images is not
efficient when a 2D noise removal algorithm is applied [20]. Therefore,
3D noise reduction image filters should be designed for the preservation
of edge structural regions and minimization of the image distortion
of signal intensity. Cannistraci et al. [21] proposed the 3D MMWF to
reduce the noise of nuclear MR signals from raw data. Therefore, it is
necessary to evaluate the performance of reducing Rician noise using
3D MMWF, which has the advantages of 3D image filter.

In this study, we compared the Rician denoising performance be-

tween 2D and 3D MMWF in T1-weighted images using data from

2

BrainWeb simulations and the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI). To evaluate the denoising performance, various image
quality evaluation factors were used for the comparative evaluation
between 2D and 3D MMWF.

2. Materials and methods

2.1. Simulation of brain T1-weighted image using various acquisition pa-
rameter from BrainWeb database

BrainWeb, which is a simulation program, can adjust the various
MRI acquisition parameter [22]. Simulated T1-weighted images of the
brain were acquired with respect to Rician noise level for evaluating the
denoising performance of 2D and 3D MMWF. In addition, a clinical T1-
weighted image was obtained from the ADNI database [23] to observe
whether denoising performance has a similar tendency when the 2D
and 3D MMWF were applied to clinical data. Table 1 shows the image
acquisition parameters.

2.2. Proposed 3D MMWF modeling

To evaluate the denoising performance of 3D MMWF, 2D MMWF
proposed by Cannistraci et al. [14] was applied as follows before
modeling the image filter:

𝑏 (𝑥, 𝑦) = 𝜇 +
𝜎2 − 𝛾2

⋅
(

𝐴 (𝑥, 𝑦) − 𝜇
)

, (1)
𝑚𝑚𝑤𝑓 𝜎2
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k

Fig. 2. Results of simulated T1-weighted images obtained from BrainWeb with respect to kernel size for 2D MMWF using various noise levels.
where 𝜇 and 𝜎 denote the median and standard deviation value of the
ernel, respectively; 𝛾2 is the standard deviation of noise; and 𝐴 (𝑥, 𝑦)

is the signal intensity of the (𝑥, 𝑦) area. On the basis of the 2D MMWF
equation, 3D MMWF, which additionally reflects the pixels of the 3D
area 𝐴 (𝑥, 𝑦, 𝑧), was modeled as follows:

𝑏𝑚𝑚𝑤𝑓 (𝑥, 𝑦, 𝑧) = 𝜇 +
𝜎2 − 𝛾2

𝜎2
⋅
(

𝐴 (𝑥, 𝑦, 𝑧) − 𝜇
)

, (2)

Kernel sizes were applied as 3, 5, 7, 9, and 11 in the 2D and 3D
MMWF.

2.3. Quantitative evaluation of image quality

COV was measured for quantitative noise evaluation factors to
compare the performance between 2D and 3D MMWF in simulations
and clinical T1-weighted images. In addition, the edge preservation
index (EPI) was measured to evaluate the restoration of tissue edges
in a simulated T1-weighted image. To evaluate the COV, the ROI
in white matter was annotated using a simulated T1-weighted image
(Fig. 1). Furthermore, a sliced image used to calculate the EPI. COV
is a quantitative index that is used for comparing image noise in
3

ROI (Eq. (3)), and a lower COV value is correlated with better image
quality.

𝐶𝑂𝑉 =
𝜎𝐴
𝑆𝐴

, (3)

where 𝑆𝐴 and 𝜎𝐴 denote the signal intensity of ROI and the standard
deviation of image noise, respectively.

EPI is an index for observing similarity (Eq. (4)) and was used to
compare the edges of tissues between the reference images (e.g., Rician
noise is not included), and 3D MMWF was applied to simulated T1-
weighted images. EPI was measured as a value between 0 and 1: an
EPI close to 1 means that the edges of the reference image and the
noisy image with the denoising filter are similar.

𝐸𝑃𝐼 =
𝛤 (𝛥𝑞1 − 𝛥𝑞1, 𝛥𝑞2 − 𝛥𝑞2)

𝛤 (𝛥𝑞1 − 𝛥𝑞1, 𝛥𝑞1 − 𝛥𝑞1) ⋅ 𝛤 (𝛥𝑞2 − 𝛥𝑞2, 𝛥𝑞2 − 𝛥𝑞2)
, (4)

where 𝛥𝑞 was calculated after application of the Laplacian filter by
using 0.3 in ROI, and 𝑞1 and 𝑞2 denote the reference image and the
image with the filter, respectively.
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Fig. 3. Results of simulated T1-weighted images obtained from BrainWeb with respect to kernel size for 3D MMWF using various noise levels.
3. Results and discussions

MRI is a useful technique for identifying the course of a disease
and determining the exact location of a lesion in brain diseases. T1-
weighted images is used to determine the exact structural location of
a lesion in the brain. When acquiring fMRI and dMRI, it is necessary
to acquire T1-weighted images in order to identify the exact structural
location of brain lesions. However, Rician noise in T1-weighted image
interferes with the accurate anatomical segmentation of brain regions,
which could cause serious problems in brain surgery or radiation
therapy. Therefore, removing Rician noise in MRI play important roles
in finding the precise location of a lesion.

2D MMWF has better performance in reducing Rician noise in T2-
weighted images in COV [19]. However, 2D MMWF uses neighborhood
pixels for denoising in MRI but does not use the pixels of other slices
as references. As a result, 2D MMWF can be effective in preserving
large-scale structures similar to other 2D denoising image filters but
may incorrectly identify the small structures of brain tissue as noise
when an image filter is applied [24]. To solve this problem, Coupe
et al. [6] proposed a 3D NLM image filter that uses the similar 3D
neighbor of voxels as references by using two voxels to reduce image
noise. In addition, diverse methods have been developed to apply a
denoising filter to 3D images to maintain noise efficiency and edges of
tissues in medical images [24–27]. According to Cannistraci et al. [21],
4

3D MMWF was proposed to remove noise in multidimensional nuclear
MR spectra in raw data areas. The application of 3D MMWF to nuclear
MR spectra has led to improvements in the detection of spectrum signal
compared with the 2D MMWF applied. Despite the advantages of 3D
MMWF, studies have not been conducted on the removal of image noise
by using 3D MWMF on medical images.

We evaluated the denoising performance of 3D MMWF by using
different kernel sizes in simulated and clinical T1-weighted images.
To observe the denoising efficiency of 3D MMWF, brain T1-weighted
images with 1%, 3%, 5%, 7%, and 9% Rician noise levels were sim-
ulated using BrainWeb. Figs. 2 and 3 respectively show the 2D and
3D MMWF that were applied to the simulated images with respect to
kernel size. Image blur increased as the kernel size increased regardless
of the amount of Rician noise. Additionally, to evaluate the denoising
performance of both image filters, the variation of COV with respect to
the filter size was calculated. Fig. 4 shows the results of this calculation.
COV decreased as kernel size increased regardless of the amount of
Rician noise. After application of 2D MMWF, COV with respect to
kernel sizes of 3, 5, 7, 9, and 11 in simulated T1-weighted images
with a 1% Rician noise level increased by 1.49, 1.69, 1.72, 1.51, and
1.40 times, respectively, compared with those after application of 3D
MMWF. However, the COV of simulated T1-weighted images applied
with 2D MMWF and with a 9% Rician noise level are 1.59, 2.17, 2,43,
2,76, and 2.26 times higher than that with 3D MMWF, respectively.
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Fig. 4. Graph results for the evaluated (a) coefficient of variation (COV) and (b) edge preservation index (EPI) with respect to kernel size for 2D and 3D MMWF (black and white
diagrams, respectively) in simulated T1-weighted images using BrainWeb.
According to the results of COV, it can be confirmed that the Rician
noise denoising performance of 3D MMWF is superior to that of 2D
MMWF in simulated T1-weighted images with a high amount of Rician
noise. To observe the changes of edges between brain tissues due to the
blurring effect from a denoising image filters, EPI was calculated using
simulated T1-weighted images with 2D and 3D MMWF, and Fig. 4(b)
shows the tendency of EPI changes. The low amount of Rician noise
in the simulated T1-weighted image shows that EPI has minor changes
in both image filters regardless of kernel size. However, by application
of a small kernel size to a simulated T1-weighted image with a high
Rician noise level, a higher EPI can be measured in 3D MMWF than
2D MMWF. According to the EPI results, the application of 3D MMWF
to T1-weighted images changes the EPI values with respect to kernel
sizes of 3, 5, 7, 9, and 11 with a 1% Rician noise to 1.01, 1.00, 1.01,
1.02, and 1.02 times higher than the EPI values with the application of
2D MMWF. However, simulated T1-weighted images with a 9% Rician
noise level and 3D MMWF have EPI values that are 1.17, 1.03, 1.01,
1.00, and 1.00 times higher than those with 2D MMWF. According to
this tendency of EPI, the use of a small kernel size in 3D MMWF can
better preserve the edge of tissues in low Rician noise in simulated
T1-weighted images than 2D MMWF.

To observe the tendency of 2D and 3D MMWF regardless of the
amount of Rician noise in T1-weighted images, five difference kernels
were applied in each image filter to calculate the average COV and
EPI (Fig. 5). The average of EPI in 2D and 3D MMWF had similar
tendencies regardless of kernel size (Fig. 5b), and the average of COV in

3D MMWF was lower than that in 2D MMWF (Fig. 5a). It is necessary to

5

confirm whether the noise evaluation factor calculated after application
of 2D and 3D MMWF to clinical T1-weighted images has a similar
tendency to the result of the noise evaluation factor in simulated T1-
weighted images. Therefore, the clinical T1-weighted image obtained
from the ADNI database is used for the evaluation of COV with respect
to changes in filter kernel size (Fig. 6), and the noted area is used
for calculating COV. It was impossible to obtain a noise free image
(e.g., reference image) in a clinical image because EPI was not calcu-
lated in a clinical T1-weighted image. Therefore, COV was calculated
in a clinical T1-weighted image in accordance with kernel size (Fig. 7).
Given that the amount of Rician noise was low in a simulated T1-
weighted image in which random Rician noise was applied, the COV
of the two denoising filters tended to be similar as the kernel size in-
creased. Regarding the changes in COV with kernel size, 3D MMWF had
COV that are 1.14, 1.10, 1.12, 1.08, and 0.98 times higher than those of
2D MMWF. When denoising Rician noise using a small kernel size of 3,
a clinical T1-weighted image applied with the 3D MMWF showed more
improvements in noise reduction than that applied with the 2D MMWF.
Compared with the result of a simulated T1-weighted image, 3D MMWF
was more efficient in removing Rician noise and in preserving the edges
of tissues in brain image. Furthermore, a similar tendency was observed
in simulated T1-weighted images with both image filters. Despite the
higher Rician noise in T1-weighted images, 3D MMWF showed similar
or better edge preservation of tissues and denoising performance than
2D MMWF in simulated and clinical T1-weighted images.

Denoising performance was evaluated using the proposed 3D

MMWF in T1-weighted images obtained from BrainWeb and the ADNI
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(a)

(b)

Fig. 5. Average of (a) COV and (b) EPI after application of the five different kernel sizes of 2D and 3D MMWF with respect to noise level.

Fig. 6. Results of T1-weighted images obtained from the ADNI database with respect to kernel size for 2D and 3D MMWF.
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Fig. 7. Results of coefficient of variation (COV) with respect to kernel size for 2D and 3D MMWF in clinical T1-weighted image obtained from the ADNI database.
atabase. For the average of COV and EPI with a specific noise level
egardless of kernel size, 3D MMWF had better denoising performance
hat can be inferred with COV. Preserving the edges of brain tissues
nferred with EPI was more efficient preventing the increase in the
lurring effect of the image. These results show that the 3D MMWF had
etter performance in denoising simulated and clinical T1-weighted
mages and was more efficient in reducing the blurring effect of the
mages than the 2D MMWF.

To reduce noise in medical images, various studies on denoising
sing conventional image filters have been performed to improve image
uality and increase diagnosis accuracy. In recent years, the develop-
ent of deep learning algorithms for image denoising has increased.
ther medical imaging techniques such as computed tomography and
PECT are indispensable when using image denoising filters to trade
ff the radiation dose. MRI does not emit ionizing radiation but has a
onger acquisition time than other medical imaging techniques. A long
cquisition time causes motion artifacts and increases the probability of
enerating image noise, which interferes with determining the location
f a lesion for diagnosis [28–30]. Motion artifacts in MRI interrupts
rain segmentation, which can cause misdiagnoses in surgery or ra-
iation therapy. Currently, the application of a software-based image
ilter to medical images is important for increasing the accuracy of deep
earning algorithms in making diagnoses, particularly with regard to
iseases involving the brain. To predict a disease using deep learning
ethods in the medical image field, various denoising methods are
sed to improve the model accuracy. According to Lee et al. [31],
8F-positron emission tomography (18F-PET) image is used for deep
earning models to predict Alzheimer’s disease. Notably, 18F-PET im-
ges that use 2D MMWF for preprocessing have better accuracy for the
iagnosis of Alzheimer’s disease. The prediction model of deep learning
ethods for the denoising of medical images improves the accuracy of
isease diagnosis, particularly when using MRI to diagnose Alzheimer’s
isease [32–34]. Therefore, 3D MMWF is not only effective in removing
ician noise but also in preserving the edges of brain tissues in MRI,
as the advantage of improving the accuracy of diagnosis by preserving
mall brain structures, and can increase the accuracy of deep learning
odels that are used in identifying minute changes in the brain.

. Conclusion

In this study, we evaluated the denoising performance between

D and 3D MMWF using T1-weighted images. 3D MMWF has better

7

performance than 2D MMWF regardless of the amount of Rician noise
in the images. When applied to T1-weighted images with 9% Rician
noise using 3D MMWF with a small kernel size, COV and EPI have
1.49 and 1.17 times improvement than 2D MMWF. In addition, when
appropriate kernel size of 3D MMWF is applied to T1-weighted images
with 1% Rician noise, EPI shows a similar tendency in both image filter,
but COV improved up to 1.72 times than 2D MMWF.

According to our results, 3D MMWF provides better image restora-
tion than 2D MMWF at reducing Rician noise while preserving the
edges of the T1-weighted images. Therefore, the denoising of MRI using
3D MMWF is expected to improve the accuracy of deep learning models
that are designed for diagnosing various brain diseases and lesions.
Furthermore, 3D MMWF can be used with diverse MRI techniques to
improve the diagnostic accuracy of fMRI or dMRI. In future studies,
we will observe if diagnostic accuracy can be improved by application
of 3D MMWF to MRI of various brain diseases and by using a deep
learning model.
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